Development of 19F NMR for measurement of [Ca2+]i and [Pb2+]i in cultured osteoblastic bone cells.
نویسندگان
چکیده
Lead (Pb) has been shown to perturb cellular calcium (Ca) homeostasis, altering sizes and flux rates of cellular pools of exchangeable Ca and impairing Ca-mediated cell processes. To date, however, a direct effect of Pb on intracellular-free Ca2+ has not yet been demonstrated. Heavy metals bind to the commonly used fluorescent Ca ion indicators with greater affinity than does Ca and thereby interfere with the expected Ca-dependent fluorescence. In this study, the fluorinated Ca ion indicator, 1,2-bis(2-amino-5-fluorophenoxy)ethane N,N,N',N'-tetraacetic acid (5F-BAPTA), and 19F NMR were used to measure the free intracellular Ca ion concentration ([Ca2+]i) in the rat osteoblastic bone cell line, ROS 17/2.8. Both Pb and Ca bind to 5F-BAPTA with high affinity, but the Pb-5F-BAPTA comple produces a 19F NMR signal at a chemical shift distinct from 5F-BAPTA and the Ca-5F-BAPTA complex. The apparent dissociation constants for Pb-5F-BAPTA and Ca-5F-BAPTA are 2 X 10(-10) M and 5 X 10(-7) M, respectively, at 30 degrees C, pH 7.1, and Mg2+ (0.5 mM). Thus, this methodology allows for the simultaneous identification and quantification of free Pb and free Ca ion concentrations. Determinations of [Ca2+]i were based on 19F NMR measurements of 5F-BAPTA-loaded ROS 17/2.8 osteoblastic bone cells that were attached to collagen-coated microcarrier beads. Cells were continuously superfused with freshly oxygenated medium at 30 degrees C. Under these conditions, the [Ca2+]i of ROS 17/2.8 cells was observed to be 128 +/- 14 nM.(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
Lead increases free Ca2+ concentration in cultured osteoblastic bone cells: simultaneous detection of intracellular free Pb2+ by 19F NMR.
Lead (Pb) has been shown to perturb Ca-mediated cellular processes. However, to date, a direct effect of Pb on intracellular free Ca2+ concentration ([Ca2+]i) has not been demonstrated. 19F NMR in combination with 1,2-bis(2-amino-5-fluorophenoxy)ethane-N,N,N',N'-tetraacetic acid (5F-BAPTA) was used to simultaneously measure [Ca2+]i and intracellular free Pb2+ concentration ([Pb2+]i) in the rat ...
متن کاملDevelopment of an Allogeneic Cultured Dermal Substitute Using a Standard Human Fibroblast Bank
Background: Fibroblasts are mesenchymal cells that can be readily cultured in the laboratory and play a significant role in epithelialmesenchymal interactions, secreting various growth factors and cytokines that have a direct effect on epidermal proliferation, differentiation and formation of extracellular matrix. They have been incorporated into various tissue-engineered and used for a variety...
متن کاملDifferntiation of Mesenchymal Stem Cells From Cord Blood to Osteblastic Cells
Purpose: This study was carried out to isolate mesenchymal stem cells from full-term cord blood and to differentiate these cells into osteoblastic cells. Materials and Methods: It this study, mesenchymal stem cells were isolated from cord blood and expanded by being cultured in the flask several times. First, the cord blood monoeuc1earcells were separated by ficoll - Hypac before they were cul...
متن کاملThe Effect of Follicular Fluid on the Proliferation and Osteoblastic Differentiation of Human Bone Marrow Mesenchymal Stem Cells
Background and Aims: Bone marrow-derived mesenchymal stem cells (BM-MSCs) are a well-known source of multipotent adult stem cells. Despite using different methodologies of MSCs preparing for clinical applications, the top safest procedure to manipulate these cells, has not yet been determined. Recently, ex-vivo expansion of MSCs for their subsequent implantation, using some biological product, ...
متن کاملAcid-sensing ion channel 1a regulates the survival of nucleus pulposus cells in the acidic environment of degenerated intervertebral discs
Objective(s): Activation of acid-sensing ion channel 1a (ASIC1a) is responsible for tissue injury caused by acidosis in nervous systems. But its physiological and pathological roles in nucleus pulposus cells (NPCs) are unclear. The aim of this study is to investigate whether ASIC1a regulates the survival of NPCs in the acidic environment of degenerated discs. Materials and Methods: NPCs were i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental Health Perspectives
دوره 84 شماره
صفحات -
تاریخ انتشار 1990